Wavelet Energy-Based Support Vector Machine for Noisy Word Boundary Detection With Speech Recognition Application
نویسندگان
چکیده
Word boundary detection in variable noise-level environments by support vector machine (SVM) using Low-band Wavelet Energy (LWE) and Zero Crossing Rate (ZCR) features is proposed in this paper. The Wavelet Energy is derived based on Wavelet transformation; it can reduce the affection of noise in a speech signal. With the inclusion of ZCR, we can robustly and effectively detect word boundary from noise with only two features. For detector design, a Gaussian-kernel SVM is used. The proposed detection method is applied to detection word boundaries for an isolated word recognition system in variable noisy environments. Experiments with different types of noises and various signal-to-noise ratios are performed. The results show that using the LWE and ZCR parameters-based SVM, good performance is achieved. Comparison with another robust detection method has also verified the performance of the proposed method.
منابع مشابه
A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملP65: Speech Recognition Based on Bbrain Signals by the Quantum Support Vector Machine for Inflammatory Patient ALS
People communicate with each other by exchanging verbal and visual expressions. However, paralyzed patients with various neurological diseases such as amyotrophic lateral sclerosis and cerebral ischemia have difficulties in daily communications because they cannot control their body voluntarily. In this context, brain-computer interface (BCI) has been studied as a tool of communication for thes...
متن کاملA Wavelet Support Vector Machine Combination Model for Daily Suspended Sediment Forecasting
Abstract In this study, wavelet support vector machine (WSWM) model is proposed for daily suspended sediment (SS) prediction. The WSVM model is achieved by combination of two methods; discrete wavelet analysis and support vector machine (SVM). The developed model was compared with single SVM. Daily discharge (Q) and SS data from Yadkin River at Yadkin College, NC station in the USA were used. I...
متن کاملA Noise Robust Speech Recognition System Using Wavelet Front End and Support Vector Machines
Recent works in speech recognition technology, classification techniques is focused on models, such as support vector machines (SVMs), in order to improve the generalization ability of the machine learning for noisy environments. However kernel function plays a vital role in the generalization ability of the SVMs. This paper address, the issue of noise robustness for an Automatic Speech Recogni...
متن کامل